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Béatrice Guyomarc’h-Delasalle4 Nico A. Blom5 Yanushi D. Wijeyeratne1
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Aims To clarify the clinical characteristics and outcomes of children with SCN5A-mediated disease and to improve their
risk stratification.

...................................................................................................................................................................................................
Methods
and results

A multicentre, international, retrospective cohort study was conducted in 25 tertiary hospitals in 13 countries be-
tween 1990 and 2015. All patients <_16 years of age diagnosed with a genetically confirmed SCN5A mutation were
included in the analysis. There was no restriction made based on their clinical diagnosis. A total of 442 children
{55.7% boys, 40.3% probands, median age: 8.0 [interquartile range (IQR) 9.5] years} from 350 families were
included; 67.9% were asymptomatic at diagnosis. Four main phenotypes were identified: isolated progressive car-
diac conduction disorders (25.6%), overlap phenotype (15.6%), isolated long QT syndrome type 3 (10.6%), and iso-
lated Brugada syndrome type 1 (1.8%); 44.3% had a negative electrocardiogram phenotype. During a median
follow-up of 5.9 (IQR 5.9) years, 272 cardiac events (CEs) occurred in 139 (31.5%) patients. Patients whose muta-
tion localized in the C-terminus had a lower risk. Compound genotype, both gain- and loss-of-function SCN5A mu-
tation, age <_1 year at diagnosis in probands and age <_1 year at diagnosis in non-probands were independent predic-
tors of CE.

...................................................................................................................................................................................................
Conclusion In this large paediatric cohort of SCN5A mutation-positive subjects, cardiac conduction disorders were the most

prevalent phenotype; CEs occurred in about one-third of genotype-positive children, and several independent risk
factors were identified, including age <_1 year at diagnosis, compound mutation, and mutation with both gain- and
loss-of-function.
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Introduction

Mutations in the gene (SCN5A) encoding the alpha subunit of the car-
diac sodium channel (NaV1.5) cause type 3 long QT syndrome
(LQT3),1 type 1 Brugada syndrome (BrS-1),2,3 progressive cardiac
conduction disorders (PCCD),3,4 atrial standstill and sick sinus syn-
drome (SSS),5 familial atrial fibrillation (AF),6 multifocal ectopic
Purkinje-related premature contractions (MEPPC), 7 dilated cardio-
myopathy (DCM),8 and sudden infant death syndrome (SIDS).9,10

Some patients with SCN5A mutations are predisposed to sudden car-
diac death (SCD), independently of age. A cardiac sodium channelop-
athy comprises a substantial proportion of aborted cardiac arrest
(ACA) in children and adolescents.11 Cardiac sodium channelopa-
thies are diagnosed in infancy and early childhood following symp-
toms, sudden death, or family screening.12,13 Due to cascade genetic
screening, the number of detected asymptomatic children with a
SCN5A mutation is increasing. There is a significant variation in man-
agement of these asymptomatic SCN5A mutation-positive children
amongst paediatric electrophysiologists.14 This is due to their relative
rarity in the paediatric population. Therefore, challenging questions in
clinical practice remain unanswered, and risk stratification is inad-
equate. This study aimed to assess the genotype–phenotype relation-
ship and the risk analysis of cardiac sodium channelopathies in a large
cohort of infants and children in order to improve their management.

Methods

Study design
A multicentre, international, retrospective cohort study was conducted
in 25 tertiary hospitals in 13 different countries from January 1990 to
December 2015. Institutional review board approval was obtained from

all participating institutions. All deceased and living patients <_16 years of
age diagnosed with a genetically confirmed SCN5A mutation were eligible
for the study. There were no restrictions to the clinical diagnoses.
Patients without a baseline electrocardiogram (ECG) were excluded
from the analysis.

Clinical investigations
In all patients, demographic data, personal and family history (FH), mode
of presentation, ECGs, echocardiography, treatment, and major cardiac
events (MCEs) throughout follow-up were ascertained. Electrolyte and
metabolic disturbances were excluded through laboratory tests. Study
physicians gave their patients information about lifestyle modifications,
such as aggressive antipyretic measures, the need for ECG monitoring
during fever episodes, and avoidance of appropriate proarrhythmic drugs.
Therapeutic management of the patients was based on the clinical judge-
ment of the referring cardiologist. In case of device implantation,
pacemaker (PM) type and mode of pacing, or implantable cardioverter-
defibrillator (ICD) type and number of appropriate/inappropriate shocks
were noted, as well as other device-related complications.

Genetic analysis
Mutation analysis of the SCN5A gene followed standard accepted proto-
cols for genetic testing. Amino acid numbering was made according to
transcription variant 1 of SCN5A (http://www.ncbi.nlm.nih.gov/;
NM_198056) and the predicted structure reported by Wang et al.,15

according to which the NaV1.5 alpha subunit protein consists of four
transmembrane domains, each composed of six segments. The biophysic-
al properties, type, and topological location of SCN5A mutations were
determined on the basis of previously published data.16,17 All variants
were reclassified by a group of authors (A.E.B., F.K., E.R.B., V.P.) at the
time of this analysis according to the recommendation of the American
College of Medical Genetics.18 SCN5A variants with minor allele fre-
quency >0.1% in ExAC database (Exome Aggregation Consortium,
Cambridge, MA, USA) and neutral synonymous variants were excluded.
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Variants were then classified into three groups: missense pathogenic;
non-missense pathogenic including truncating variants (non-sense, splice
acceptor, splice donor, and frameshift mutations) and in-frame indels; and
variants of uncertain significance (VUS). Missense variants were classified
as pathogenic/likely pathogenic or VUS using generally accepted
criteria18: disease-causative mutation databases, localization to highly
conserved amino acid residues/key functional domains, co-segregation of
the variant with the disease phenotype, evidence of perturbed ion chan-
nel function through in vitro functional studies. In case of double SCN5A
mutation, patients were considered for risk analysis according to muta-
tion location only if both mutations had the same location.

Statistical analysis
Continuous data were presented as mean (±standard deviation) or me-
dian [interquartile range (IQR)] based on the distribution. Categorical
variables were presented as counts (proportions). The Mann–Whitney U
and Kruskal–Wallis tests were performed to test for statistical differences
in continuous parameters between two or more groups, respectively.
The v2 or the Fisher exact test (based on expected frequency) were used
to compare categorical variables between groups. Bonferroni method
was used for post hoc tests. We adjusted P-value level on number of hy-
pothesis tested. The Kaplan–Meier method estimator was used to assess
the time to a first MCE. A Cox proportional-hazards regression analysis
with random effect on family [with hazard ratios (HR) and confidence
intervals (CI)] was used to evaluate the independent risk of clinical- and
genetic-factors of interest for first MCE. From univariate analysis, we
selected variables with P-value <0.10 (statistical criterion) and looked at
multicollinearity between variables. For the multivariate model, we kept
the following variables: proband, age <1 year at diagnosis, phenotype at
baseline, genotype, location, HR, atrioventricular block (AVB), RBBB, and
supraventricular arrhythmia. Variables were eliminated from highest to
lowest P-values but remained in the final model if the P-value was less
than 0.05 or seem to be confounders (more than 10% change in esti-
mate). Final multivariable Cox model was stratified by phenotype (LQT3,
PCCD, overlap phenotype, and ECG phenotype-negative) at baseline to
relax the assumption of proportional hazards. All two-way interactions
between pairs of predictors in the model were tested, one at a time. The
mean event rate per year was evaluated by the number of events occur-
ring during the follow-up divided by the number of patients multiplied by
the average duration of follow-up. A P-value <0.05 was considered statis-
tically significant when no Bonferroni correction was made. All P-values
are two-sided. Due to the small number of patients in BrS-1, DCM and
SSS phenotypes, these were not included in all the analysis. Data were
analysed with the SAS packages (SAS Institute Inc. version 9, 4, Cary, NC,
USA).

Results

A total of 442 children [246 boys (56%), 178 probands (40%), and
median age at diagnosis of 8.0 (IQR 9.5) years] from 350 distinct fami-
lies were eligible for the study.

Baseline clinical characteristics
Most of the patients (68%) were asymptomatic at diagnosis
(Supplementary material online, Figure S1). The four ‘major’ ECG
phenotypes at baseline were isolated PCCD (26%), overlap pheno-
type (16%), isolated LQT3 (11%), and isolated BrS1 (2%); 196 (44%)
patients had a negative ECG phenotype at baseline (Figure 1). Clinical
characteristics of each patients’ group are detailed in Supplementary

material online. All groups had similar gender distribution (P = 0.13)
and median age at diagnosis (P = 0.32). The proportion of probands
differed among groups (P = 0.02). The mode of presentation also dif-
fered (P < 0.001), an initial cardiac arrest being more frequent in over-
lap phenotype patients [16/69 (23%), P = 0.0001], isolated PCCD
patients [20/113 (18%), P = 0.002], and isolated LQT3 patients [11/47
(23%), P = 0.0005] compared to negative ECG phenotype patients
[13/196 (7%)] (Supplementary material online, Table S1).

Clinical outcomes
Overall there were 272 MCEs in 139 (31%) patients during a median
follow-up period of 5.9 years (IQR 5.9). Fifty (11%) patients had re-
current MCEs on treatment. Of the 77 (17%) ICD-implanted
patients, 100 appropriate shocks were delivered in 28 (36%) patients
during a median follow-up period of 3.3 years (Supplementary mater-
ial online, Table S2). Inappropriate ICD shocks occurred in nine
patients (12%; T wave oversensing in seven patients, AF in one, and
lead fracture in one). The four ‘major’ ECG phenotypes at baseline
developed as follows:

Isolated progressive cardiac conduction disorder patients

At a median follow-up of 5.7 (0.0–35.7) years, 26/113 (23%) patients
kept an isolated PCCD phenotype; 13/113 (11%) had received PM
implantation at a median age of 5.42 (0.06–15.58) years; 85% of
PCCD patients had their first PM insertion by the age of 11;
permanent PM were implanted for symptomatic bradycardia in 7/13
patients (syncope in 5, exercise-induced dyspnoea in 2), whilst the
indications were prophylactic in 6/13 patients, including a mean day-
time heart rate <50 b.p.m. in 4 children >1 year of age and ventricular
pauses longer than 3 RR intervals in 2; 38/113 (34%) experienced >_1
MCE, the first of which being cardiac arrest [18% including 3 docu-
mented ventricular tachycardia (VT), 1 polymorphic VT with tor-
sades de pointes (TdP), and 1 ventricular fibrillation (VF)], SIDS (2%),
or syncope (14%). At the time of their event, PCCD patients pre-
sented with the association of an AVB and right bundle branch block
(RBBB) (17/38, 45%), an isolated first-degree AVB (13/38, 34%), an
isolated complete RBBB (4/38, 10.5%) or a trifascicular block (4/38,
10.5%).

Two patients died (one during infancy, one SCD) and one required
heart transplantation for intractable arrhythmias; although none of
them underwent a sodium-channel blocker challenge, all three
patients maintained an isolated cardiac conduction disorders pheno-
type throughout follow-up.

Overlap phenotype patients

After 5.7 (0.0–45.7) years, 34/69 (50%) patients had pharmacological
treatment (beta-blocker: 39%, sodium channel blocker: 22% accord-
ing to the combination of phenotypes, see Supplementary material
online, Table S3); PM or ICD had been implanted in 10/69 (14%) and
17/69 (25%) respectively. At least one MCE occurred in 31/69
patients (45%; 1 recurrence in 6 patients, 2 recurrences in 1 patient,
and >_2 recurrences in 5 patients). Three patients died from SCD and
one required extracorporeal membrane oxygenation support and
was then transplanted for intractable arrhythmias.
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..Isolated type 3 long QT syndrome patients

At a median follow-up of 5.9 (0.0–26.5) years, 32/47 (68%) patients
received a beta-blocker, coprescribed with a sodium channel blocker
in 10 (21%), 3 (6%) had undergone left cardiac sympathetic denerv-
ation and PM and ICD implantation occurred in 3 (6%) and 11 (23%),
respectively.

Major cardiac event occurred in 25 patients [53%, 5/25 (11%)
<_1 year of age, 1/25 (4%) on beta-blocker at the time of the event]
(Supplementary material online, Table S4). The first MCE was a SCD
(2/47: 4%, including 1 during infancy), an ACA (19%) or a syncope
(30%). Nine patients experienced more than one MCE. At the time
of the first recurrent event, 7/9 patients were receiving beta-blocker
therapy (Supplementary material online, Table S5); three patients
experienced several recurrences under a coprescription of beta-
blocker and mexiletine. Seven ICD shocks (6 appropriate, 1 inappro-
priate) were delivered in 3/11 (27%) implanted patients. Six (13%)
patients died throughout follow-up, three of them had experienced a
MCE in the first year of life.

Isolated type 1 Brugada syndrome patients

After 8.1 (1.8–15.7) years, 3/8 (37%) symptomatic BrS1 patients had
an ICD (2.8, 11.5, and 18.8 years at implantation). They had presented
with syncope (2 patients) or documented VT. One of them experi-
enced a fever-associated VF-induced appropriate ICD shock at
13 years whilst under treatment. No death occurred. The five
remaining patients were asymptomatic and left untreated.

Negative electrocardiogram phenotype
patients
One hundred and ninety-six patients [44%, 52% boys, 33% probands,
median age at diagnosis: 8.8 (IQR 8.7) years] had a normal ECG at
baseline and underwent genetic screening because of cardiac arrest
(7%), syncope (13%), or because of familial screening in asymptomat-
ic patients (80%). A FH of either SCD/ICD implantation or PCCD/
PM implantation was noted in 55% and 15%, respectively.

Of the 196 phenotype-negative patients, 27% developed an ECG
phenotype throughout follow-up [5.9 (0.4–26.5) years], represented
by an isolated PCCD phenotype (13%), an isolated LQT3 (5%), an
isolated BrS1 (5%), or an overlap phenotype (4%), whereas 73%
remained phenotype-negative. At least one MCE occurred in 40
(20%).

Of the 39 (20%) symptomatic, negative ECG phenotype patients, 26
received a beta-blocker. All but one negative ECG phenotype patients
who experienced MCEs during follow-up were already symptomatic
at diagnosis. Twelve experienced at least one recurrent MCE at a me-
dian delay of 3.9 (9.6) years since the diagnosis [median age of recur-
rent event: 3.0 (4.3) years]. All but one were treated by beta-blocker
therapy at the time of the recurrent MCE; Of these 12 children, 8 kept
a negative ECG phenotype at last visit, whereas 4 were further diag-
nosed with an isolated LQT3 phenotype and, despite additional treat-
ment with mexiletine, experienced further recurrent MCEs leading to
left cardiac sympathetic denervation (LCSD) and ICD implantation.

The vast majority (156/157, 99%) of the asymptomatic, negative
ECG phenotype children remained asymptomatic throughout
follow-up; one patient (0.6%) however became later symptomatic:
this was a 5 year-old female patient with a normal ECG at familial
screening; she was further diagnosed with an isolated LQT3 on
follow-up ECGs at age 13 (QTc 491 ms) and received mexiletine; at
age 18, she presented with an electrical storm whilst receiving mexi-
letine (500 mg morning, 250 mg afternoon, and 500 mg evening),
leading to ICD implantation.

Genetic characteristics
The 442 SCN5A genotype-positive children had 185 independent
SCN5A variants (Supplementary material online, Table S5). Three
(0.7%) patients harboured a double heterozygous SCN5A mutation; 9
(2%) had a compound genotype with an additional disease-causing
mutation in another gene: KCNQ1 (3 patients), KCNH2 (4 patients),
RYR2 (1 patient), or CACNA1C (1 patient). A loss-of-function muta-
tion was found in 178 (40%) patients whereas, 87 (20%) had a gain-
of-function mutation, 85 (19%) a both gain- and loss-of-function

Figure 1 Venn diagram of baseline electrocardiogram phenotypes.
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Table 1 Risk analysis for major cardiac event (n 5 442)

No MCE (n 5 303) MCE (n 5 139) Analysis HR (95% CI) P-value

Clinical characteristics

Male, n (%) 169 (55.8) 77 (55.4) Yes vs. No 1 (0.7–1.5) 0.87

Proband, n (%) 75 (24.8) 103 (74.1) Yes vs. No 7.8 (5.1–12.1) <0.0001

Age <_1 year at diagnosis, n (%) 34 (11.2) 41 (29.5) Yes vs. No 11.3 (6.7–18.9) <0.0001

Baseline ECG phenotype

Isolated LQT3, n (%) 22 (7.3) 25 (18.0) Yes vs. No 1.9 (1.1–3.1) 0.01

Isolated BrS-1, n (%) 5 (2.0) 3 (2.2) Yes vs. No 1.2 (0.3–4.4) 0.69

Isolated PCCD, n (%) 75 (24.7) 38 (27.3) Yes vs. No 1.2 (0.8–1.8) 0.29

Isolated DCM, n (%) 3 (0.9) 0 (0.0) Yes vs. No Not applicable 0.32a

Isolated SSS, n (%) 4 (1.3) 2 (1.4) Yes vs. No 0.9 (0.2–4.3) 0.84

Overlap phenotype, n (%) 38 (12.5) 31 (22.3) Yes vs. No 1.9 (1.2–3.1) 0.004

Negative ECG phenotype, n (%) 156 (51.5) 40 (28.8) Yes vs. No 0.4 (0.3–0.6) <0.001

First available ECG characteristicsa

Median age at ECG (years) (IQR) 8.2 (8.4) 7.6 (12.8) Unit = 2 0.8 (0.7–0.9) <0.0001

Heart rate, b.p.m. (IQR) 79 (26.7) 77 (47.1) Unit = 20 1.1 (1.0–1.3) 0.005

PR interval, ms (IQR) 160 (42) 160 (41) Unit = 20 1.0 (0.9–1.1) 0.52

QRS complex, ms (IQR) 80 (24) 80 (40) Unit = 20 1.0 (0.8–1.2) 0.97

QT interval, ms (IQR) 360 (100) 380 (110) Unit = 20 1.0 (0.9–1.1) 0.17

QTc interval, ms (IQR) 430 (68) 452 (88) Unit = 20 1.1 (1.1–1.2) <0.0001

QTc >_500 ms 37 (12.7) 41 (30.8) Yes vs. No 2.2 (1.4–3.4) 0.0002

Diagnosis of LQT3, n (%) 70 (23.1) 57 (41.0) Yes vs. No 1.8 (1.2–2.7) 0.001

Diagnosis of sinus node dysfunction, n (%) 12 (4.0) 11 (7.9) Yes vs. No 1.5 (0.7–3.1) 0.18

Diagnosis of AV block (any grade), n (%) 93 (30.8) 59 (42.4) Yes vs. No 1.7 (1.2–2.6) 0.003

Diagnosis of RBBB (any grade), n (%) 122 (40.4) 66 (47.5) Yes vs. No 1.5 (1.0–2.1) 0.03

Diagnosis of LBBB (any grade), n (%) 9 (3.0) 8 (5.8) Yes vs. No 2.2 (0.9–4.9) 0.05

Diagnosis of SVT, n (%) 4 (1.3) 11 (7.9) Yes vs. No 4 (1.9–8.9) 0.0002

Diagnosis of spontaneous BrS1, n (%) 24 (7.9) 14 (10.1) Yes vs. No 1.2 (0.7–2.3) 0.42

Genetic characteristics

Genotype 0.004

Single SCN5A mutation, n (%) 299 (98.7) 131 (94.2) Reference 1

Double SCN5A mutation, n (%) 1 (0.3) 2 (1.4) vs. single 10.3 (1.8–58.7)

Compound mutation, n (%) 3 (1.0) 6 (4.3) vs. single 2.2 (0.8–6.2)

Mutation type 0.52

Non-missense pathogenic mutation, n (%) 74 (24.4) 39 (28.1) Reference 1

Missense pathogenic mutation, n (%) 200 (66.0) 83 (59.7) vs. non-missense 0.84 (0.54–1.31)

Unknown functional effect, n (%) 29 (9.6) 17 (12.2) vs. non-missense 1.03 (0.53–2.00)

Mutation location (domains) <0.0001

N-terminus location, n (%) 4 (1.3) 3 (2.2) vs. DI domain 1.3 (0.3–5.6)

DI domain, n (%) 37 (12.2) 27 (19.4) Reference 1

DI/DII interdomain linker, n (%) 18 (5.9) 8 (5.8) vs. DI domain 0.7 (0.3–1.9)

DII domain, n (%) 29 (9.6) 9 (6.5) vs. DI domain 0.5 (0.2–1.1)

DII/DIII interdomain linker, n (%) 22 (7.3) 8 (5.8) vs. DI domain 0.5 (0.2–1.2)

DIII domain, n (%) 49 (16.2) 19 (13.7) vs. DI domain 0.5 (0.2–1.0)

DIII/DIV interdomain linker, n (%) 15 (5.0) 13 (9.4) vs. DI domain 1.3 (0.5–3.2)

DIV domain, n (%) 40 (13.2) 31 (22.3) vs. DI domain 1.4 (0.7–2.8)

C-terminus, n (%) 89 (29.4) 21 (15.1) vs. DI domain 0.3 (0.1–0.5)

Mutation location (segments, n = 241) 0.52

S1–S4, n (%) 51 (32.9) 29 (33.7) Reference 1

S5–S6, n (%) 104 (67.1) 57 (66.3) vs. S1–S4 1.1 (0.7–1.9)

Mutation functional effect <0.0001

Loss of function, n (%) 126 (41.6) 52 (37.4) Reference 1

Gain of function, n (%) 46 (15.2) 41 (29.5) vs. loss-of-function 2.3 (1.4–3.9)

Continued
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mutation, and 92 (21%) had a VUS. Although VUS patients were
more frequently probands (P = 0.003), their clinical characteristics
did not differ from those of patients with a variant of known function-
al effect (Supplementary material online, Table S6). Most variants
were missense pathogenic mutations (64%), whereas 25% were non-
missense pathogenic mutations (truncation mutations: 18%, in-frame
mutations: 7%). Topological location of mutations is shown in
Supplementary material online, Figure S2.

Genotype–phenotype correlations
Mutation topological location

Patients with a mutation in the C-terminus domain (n = 110) were
less frequently probands (P = 0.03), were diagnosed later in life
(P = 0.01), were less frequently symptomatic at diagnosis (P = 0.001),
had less MCEs (P = 0.0002) and less appropriate ICD shocks
(P = 0.03) during follow-up (Supplementary material online, Table S7
and Take home Figure). No significant difference was found when
comparing variants localized in S1–S4 to those localized in S5–S6 in
the relevant 241 patients (Supplementary material online, Table S8).

Mutation functional effect

Children with a gain-of-function SCN5A mutation mainly presented
with a baseline negative ECG phenotype (45%) or isolated LQT3
(26%); those with a loss-of-function mutation presented mainly with

isolated PCCD (38%), negative ECG phenotype (27%), or overlap
phenotype (19%) at baseline; and those with a both gain- and loss-of-
function mainly had negative ECG phenotype (35%), isolated PCCD
(22%), isolated LQT3 (12%), or overlap phenotype (14%)
(Supplementary material online, Table S9). Comparison between
groups by looking at the functional effect of the mutation (gain of
function, loss of function, or both) demonstrated that gain-of-
function mutation carriers were more likely to have a cardiac arrest
as first presentation (P < 0.001) and a greater rate of both MCEs dur-
ing follow-up (P < 0.001) and ICD implantation (P < 0.001).

Mutation type

Non-missense mutation were more frequently identified in case of
isolated PCCD (P < 0.006) but less frequently found in case of nega-
tive ECG phenotype (P < 0.007) (Supplementary material online,
Table S10). The following clinical parameters differed according to
mutation type: age at diagnosis (P = 0.02), proportion of diagnosis
<_1 year (P = 0.02), FH of SCD/ICD (P = 0.03), and FH of PCCD/PM
(P = 0.001), as did the following baseline phenotypes: isolated PCCD
(P = 0.006) and negative ECG phenotype (P = 0.007) (Supplementary
material online, Table S10). However, the type of mutation did not
change the risk of MCE during follow-up.

Univariate risk analysis
The risk of MCE during follow-up was related to phenotype (Table 1).
Age <_1 year at diagnosis [HR (95% CI) 11.3 (6.7–18.9), P < 0.0001],

....................................................................................................................................................................................................................

Table 1 Continued

No MCE (n 5 303) MCE (n 5 139) Analysis HR (95% CI) P-value

Gain and loss, n (%) 71 (23.4) 14 (10.1) vs. loss-of-function 0.4 (0.2–0.8)

Unknown functional effect, n (%) 60 (19.8) 32 (23.0) vs. loss-of-function 1.2 (0.7–2.1)

AV block, atrioventricular block; BrS-1, Brugada syndrome type 1; CE, cardiac event; DCM, dilated cardiomyopathy; FH, family history; FU, follow-up; ICD, implantable cardi-
overter-defibrillator; LBBB, left bundle branch block; LQT3, long QT syndrome type 3; PCCD, progressive cardiac conduction defect; PM, pacemaker; QTc, corrected QT
value; RBBB, right bundle branch block; SCD, sudden cardiac death; SSS, sick sinus syndrome; SVT, supraventricular tachycardia.
aCox model is not applicable when subgroups contain no event. In this later case, we presented log-rank test.
Bold values are statistically significant P-values.

Figure 2 Freedom from major cardiac event in probands and
non-probands.

Take home figure. Freedom from major cardiac event
according to SCN5A mutation location (domains).
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..proband status [HR (95% CI) 7.8 (5.1–12.1), P < 0.0001] (Figure 2),
supraventricular tachycardia [HR (95% CI) 4.0(1.9–8.9),
P = 0.0002], baseline QTc >_500 ms [HR (95% CI) 2.2(1.4–3.4),
P = 0.0002], and AVB of any type [HR (95% CI) 1.7(1.2–2.6),
P = 0.003] were predictors of MCEs. The effect of baseline ECG
phenotype on the occurrence of MCE varied with age and the as-
sumption of proportional hazards was not respected.

Occurrence of MCE also differed according to genotype (P = 0.004)
[double vs single mutation: HR (95% CI) 10.3 (1.8–58.7); compound vs.
single mutation: HR (95% CI) 2.2 (0.8–6.2)] (Table 1), gain-of-function
mutation [HR (95% CI) 2.3 (1.4–3.9), P < 0.0001] and C-terminus mu-
tation location [HR (95% CI) 0.3 (0.1–0.5), P < 0.0001] (Supplementary
material online, Figure S3). Mutation type did not associate with out-
comes (P = 0.52) (Supplementary material online, Figure S4).

Five SCN5A mutations correlated with specific clinical characteristics
(Supplementary material online, Table S11). For instance, p.Glu1784Lys
was associated with a lower risk of CE [P = 0.0002, HR (95% CI) 3.7
(1.8–7.6)], whereas the presence of p.Val411Met or p.Val1763Met was
associated with a higher risk of CE [P < 0.0001, HR (95% CI) 5.1 (2.3–
11.4) and P < 0.0001, HR (95% CI): 15.4 (5.4–43.4), respectively].

Multivariable analysis
A multivariable analysis stratified by baseline phenotype and adjusted
on age <_1 year at diagnosis and proband status (interaction,
P = 0.0002), genotype (P = 0.03), and mutation functional effect
(P = 0.001), showed that age <_1 year at diagnosis in probands
[P < 0.0001; HR (95% CI) 35.4 (16.2–77.6)], compound mutation
[P = 0.03; HR (95% CI) 3.7 (1.2–12.0)], age <_1 year at diagnosis in
non-probands [P = 0.03; HR (95% CI) 3.2 (1.1–9.1)] and mutation
with both gain- and loss-of-function [P = 0.04; HR (95% CI) 0.5 (0.2–
0.9)] were independent risk factors for first CE (Supplementary ma-
terial online, Table S12). Quantifiable indication of risk of events in an
SCN5A mutation-positive child is presented in Supplementary mater-
ial online, Figure S5.

Discussion

This study reports the clinical evaluation and follow-up of the largest
paediatric population of SCN5A-mutation-positive individuals
reported to date. We presented a highly symptomatic cohort with

SCN5A children
N=424. FU: 12.2

CE 134: 2.6%

Age ≤1 yr
N=73. FU: 3.9
CE 40: 13.9%

Proband
N=41. FU: 0.9

CE 35: 97%

Rela�ve
N=32. FU: 7.9

CE 5: 1.9%

Single SCN5A muta�on
N=39. FU: 0.9

CE 33: 94%

Double SCN5A muta�on
N=2. FU: 0.1
CE 2: 100%

Loss-of-func�on
N=100. FU: 13.5

CE 19: 1.4%

Gain-of-func�on
N=36. FU: 16.9

CE 4: 0.7%

Both loss and gain 
of func�on

N=49. FU: 16.3
CE 3: 0.4%

Single SCN5A muta�on
N=32. FU: 7.9

CE 5: 1.9%

Age >1 yr
N=351. FU: 13.9

CE 94: 1.9%

Proband
N=129. FU: 12.1

CE 63: 4%

Rela�ve
N=222. FU: 15.0

CE 31: 0.9%

Single SCN5A muta�on
N=217. FU: 15.0

CE 29: 0.9%

Compound Genotype
N=5. FU: 12.6

CE 2: 3.2%

Loss-of-func�on
N=13. FU: 1.5

CE 10: 51%

Gain-of-func�on
N=16. FU: 1
CE 14: 90%

Both loss and gain 
of func�on

N=1

Double SCN5A muta�on
N=1

Single SCN5A muta�on
N=124. FU: 12.9

CE 63: 4%

Compound genotype
N=4. FU: 10.0

CE 4: 100%

Loss-of-func�on
N=141. FU: 10.2

CE 17: 4%

Gain-of-func�on
N=24. FU: 10.5

CE 19: 7.5%

Both loss and gain 
of func�on

N=25. FU: 16.0
CE 8: 2%

Figure 3 Mean event rate per year according to risk factors identified on multivariate analysis. FU, follow-up, %, mean event rate per year.
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SCD and ACA in 14%, syncope in 16%, and events during follow-up
in 31%. Cardiac conduction disorder was the most prevalent pheno-
type. Age <_1 year at diagnosis in probands, compound genotype, age
<_1 year at diagnosis in non-probands, and both gain- and loss-of-
function SCN5A mutation were independent predictors of MCE. We
also found that asymptomatic negative ECG phenotype children have
a good prognosis, whereas previously symptomatic children with a
negative ECG phenotype may undergo recurrent events even under
treatment.

Clinical characteristics
The risk for life-threatening arrhythmias was higher in previously
symptomatic patients, as previously shown in young BrS19,20 and
LQT3 patients.21,22 We found no gender difference, in phenotype or
in the risk for a MCE. Unlike previous adult studies where BrS was
predominant in male subjects23 and life-threatening events were
higher among LQT3 men,24 our results are concordant with previous
smaller paediatric reports19,25,26 and the contradiction might be
explained by similarities in sex hormones between prepubertal boys
and girls. However, the underlying molecular mechanisms are still
poorly understood.27

In our series, more than one-third of isolated PCCD patients
experienced MCE, the first of which being cardiac arrest in a high
proportion of cases. Phenotypic expression of SCN5A mutations
may vary from individual to individual and has an age-dependent
onset.28 Although there is no genotype-based risk stratification
for PCCD patients, the occurrence of tachyarrhythmia and SCD
was expected to be more frequent in case of loss-of-function
SCN5A mutation, as per SCN5A-associated BrS that is a similar dis-
ease entity.29 This was also suggested by familial reports of over-
lapping phenotypes of BrS1, LQTS, and PCCD3,12 and the
observation that BrS patients with SCN5A mutations exhibit more
conduction abnormalities and have a higher risk for MCEs.30 Our
results demonstrate that some isolated PCCD patients are at
increased risk of SCD indeed, even at an early age and even if an
isolated PCCD phenotype is maintained throughout follow-up, an
AVB of any type being an univariate risk factor for CE. Children
diagnosed with an AVB of any type should therefore be offered
genetic screening; when a SCN5A mutation is diagnosed, ICD ther-
apy should be discussed in this high-risk group in case of additional
risk factors that are age <_1 year at diagnosis in probands, com-
pound mutation, age <_1 year at diagnosis in non-probands and
SCN5A mutation with both gain- and loss-of-function.

There is also limited data on SCN5A genotype positive children
with a negative ECG phenotype.12,14 We found that the vast majority
of those who are asymptomatic at diagnosis have a good long-term
prognosis; however, they need to be followed, as negative ECG
phenotype patients may develop a phenotype over time. Negative
ECG phenotype children can also present with symptoms; close
follow-up and ICD implantation should be considered in symptomat-
ic SCN5A mutation-positive children, even if displaying a negative
ECG phenotype, because a substantial proportion of them will ex-
perience further recurrent events, even under appropriate
treatment.

Correlation between genotype and
phenotype
Unlike a previous small report of loss-of-function cardiac sodium
channelopathies that indicated that missense pathogenic variants
were more common,25 non-missense pathogenic variants were over-
represented in isolated PCCD in our much larger sample. This is con-
cordant with the role of haploinsufficiency in causing greater impair-
ment of INa and more severe phenotype leading to PCCD.
Phenotype correlation of SCN5A mutation-positive subjects, based
on variant location has not been possible before due to small num-
bers.31 We found that the N-terminus domain, the DI–DIV region
and the C-terminus domain were not over-represented amongst the
five main ECG phenotypes. No difference appeared when consider-
ing the six segments of the transmembrane domains. However, in a
recent case/control study, Kapplinger et al.17 were able to identify
regions of Nav1.5 associated with a high probability of pathogenicity
in both BrS and LQT3. In their study, the transmembrane region
yielded an overrepresentation of BrS-associated variants, whereas
the DIII/DIV interdomain linker and the S3–S5þ 6 segment of all
transmembrane domains hosted an over-representation of LQT3-
associated variants.17 These differences are likely due to ascertain-
ment biases inherent to each study design.

Clinical severity: clinical and genetic
predictors
The high incidence of MCEs in our cohort was concordant with a
previous small LQT3 paediatric multicentre international study21 and
a recent multicentre series of 391 adult and paediatric LQT3
patients.22 However, the burden of events was higher than reported
by other LQT3 or BrS series in the past.26,32,33 The rate of SCD or
ACA in our cohort was 14%, similar to other recent reports on
LQT3 patients21,22 but significantly higher than that reported in BrS
children.19,26,34 This may reflect an over-representation of LQT3
phenotypes in our cohort, as LQT3 patients who experience MCE
during the first year of life are at high risk for subsequent
MCEs.32,35,36 Indeed, we found that ACA was the first symptom in
23% of the 47 isolated LQT3 children who exhibited a 7% annual
rate of CE per year throughout follow-up, although only 1 (4%) was
on beta-blocker at the time of the first MCE. Moreover, the two
SCN5A mutations associated with an increased risk of MCEs in our
series, namely p.Val411Met and p.Val1763Met were both gain-of-
function mutations.

SCN5A mutations localizing to the transmembrane regions or the
N-terminus were associated with a higher risk for CE compared to
the C-terminus. This is an important finding that may help geneticists
and physicians counselling young affected individuals and their
families.

It is recognized that double SCN5A mutation carriers have a more
severe phenotype with longer QTc intervals, a younger age at diagno-
sis, and more CEs despite therapy.33

Schwartz et al.36 first raised the issue of different response of
LQT3 patients to beta-blockers and/or LCSD between infants with
MCEs in the first year of life and those presenting later. This concept
was then confirmed by data from the International LQTS Registry
showing that patients with an ACA during their first year of life had a
very high risk for subsequent ACA or SCD during their next 10 years
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.
of life and that beta-blockers might not be effective in preventing fatal
MCEs in this high-risk subset.37 Our results extend this observation
to all paediatric SCN5A genotype positive subjects, whatever their
ECG phenotype, as we found that both age <_1 year at diagnosis in
probands and age <_1 year at diagnosis in non-probands were inde-
pendent risk factors for first CE. A significant subset of these patients
might represent de novo mutations, which are usually associated with
greater physico-chemical difference and are more likely to be more
severe in effect than inherited mutations.38 This is in keeping with the
observation of de novo mutations in the SCN5A gene associated with
early onset of sudden infant death.9,10,39 Our observation may there-
fore be due to a clustering of de novo mutations40 and SCN5A
mutation-positive patients with no FH constitute a subgroup at high-
risk of ACA and arrhythmic events and should be treated
accordingly.

Conclusions

In this large paediatric cohort of SCN5A genotype positive patients,
cardiac conduction disorders were the most prevalent phenotype.
Symptomatic individuals and LQT3 patients had the worst prognosis.
Age <_1 year at diagnosis in probands was associated with the highest
risk. However, both negative ECG phenotype children and isolated
PCCD children can also present with symptoms and these patients
need to be accurately treated and followed. Compound genotype
with associated mutation in another gene and for the first time variant
topological location were independent risk factors for CEs. These
findings offer therapeutic opportunity for determining risk in these
vulnerable young patients.

Supplementary material

Supplementary material is available at European Heart Journal online.
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Loussouarn G, Wilde AAM, Wolf J-E, Baró I, Kyndt F, Probst V. Multifocal ectop-
ic Purkinje-related premature contractions: a new SCN5A-related cardiac chan-
nelopathy. J Am Coll Cardiol 2012;60:144–156.

8. McNair WP, Ku L, Taylor MRG, Fain PR, Dao D, Wolfel E, Mestroni L; Familial
Cardiomyopathy Registry Research Group. SCN5A mutation associated with
dilated cardiomyopathy, conduction disorder, and arrhythmia. Circulation 2004;
110:2163–2167.

9. Schwartz PJ, Priori SG, Dumaine R, Napolitano C, Antzelevitch C, Stramba-
Badiale M, Richard TA, Berti MR, Bloise R. A molecular link between the sudden
infant death syndrome and the long-QT syndrome. N Engl J Med 2000;343:
262–267.

10. Ackerman MJ, Siu BL, Sturner WQ, Tester DJ, Valdivia CR, Makielski JC, Towbin
JA. Postmortem molecular analysis of SCN5A defects in sudden infant death syn-
drome. JAMA 2001;286:2264–2269.

11. Wong LCH, Behr ER. Sudden unexplained death in infants and children: the role
of undiagnosed inherited cardiac conditions. Europace 2014;16:1706–1713.

12. Priori SG, Wilde AA, Horie M, Cho Y, Behr ER, Berul C, Blom N, Brugada J,
Chiang C-E, Huikuri H, Kannankeril P, Krahn A, Leenhardt A, Moss A, Schwartz
PJ, Shimizu W, Tomaselli G, Tracy C. HRS/EHRA/APHRS expert consensus
statement on the diagnosis and management of patients with inherited primary
arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May
2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm 2013;
10:1932–1963.

13. Kato K, Makiyama T, Wu J, Ding W-G, Kimura H, Naiki N, Ohno S, Itoh H,
Nakanishi T, Matsuura H, Horie M. Cardiac channelopathies associated with in-
fantile fatal ventricular arrhythmias: from the cradle to the bench. J Cardiovasc
Electrophysiol 2014;25:66–73.

14. Harris BU, Miyake CY, Motonaga KS, Dubin AM. Diagnosis and management of
pediatric brugada syndrome: a survey of pediatric electrophysiologists. Pacing Clin
Electrophysiol PACE 2014;37:638–642.

15. Wang Q, Li Z, Shen J, Keating MT. Genomic organization of the human SCN5A
gene encoding the cardiac sodium channel. Genomics 1996;34:9–16.

16. Meregalli PG, Tan HL, Probst V, Koopmann TT, Tanck MW, Bhuiyan ZA, Sacher
F, Kyndt F, Schott J-J, Albuisson J, Mabo P, Bezzina CR, Le Marec H, Wilde AAM.
Type of SCN5A mutation determines clinical severity and degree of conduction
slowing in loss-of-function sodium channelopathies. Heart Rhythm 2009;6:
341–348.

17. Kapplinger JD, Giudicessi JR, Ye D, Tester DJ, Callis TE, Valdivia CR, Makielski
JC, Wilde AA, Ackerman MJ. Enhanced classification of Brugada syndrome-
associated and long-QT syndrome-associated genetic variants in the SCN5A-
encoded Na(v)1.5 cardiac sodium channel. Circ Cardiovasc Genet 2015;8:582–595.

18. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde
M, Lyon E, Spector E, Voelkerding K, Rehm HL; ACMG Laboratory Quality
Assurance Committee. Standards and guidelines for the interpretation of se-
quence variants: a joint consensus recommendation of the American College of
Medical Genetics and Genomics and the Association for Molecular Pathology.
Genet Med 2015;17:405–424.

SCN5A mutations in 442 neonates and children 2887
D

ow
nloaded from

 https://academ
ic.oup.com

/eurheartj/article-abstract/39/31/2879/5060567 by Auckland C
ity H

ospital user on 05 O
ctober 2018

Deleted Text:  
Deleted Text:  
Deleted Text: family history
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehy412#supplementary-data


..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.19. Andorin A, Behr ER, Denjoy I, Crotti L, Dagradi F, Jesel L, Sacher F, Petit B,
Mabo P, Maltret A, Wong LCH, Degand B, Bertaux G, Maury P, Dulac Y,
Delasalle B, Gourraud J-B, Babuty D, Blom NA, Schwartz PJ, Wilde AA, Probst
V. Impact of clinical and genetic findings on the management of young patients
with Brugada syndrome. Heart Rhythm 2016;13:1274–1282.

20. Gonzalez Corcia MC, Sieira J, Sarkozy A, Asmundis C, de Chierchia G-B,
Hernandez Ojeda J, Pappaert G, Brugada P. Brugada syndrome in the young: an
assessment of risk factors predicting future events. Europace 2017;19:1864–1873.

21. Blaufox AD, Tristani-Firouzi M, Seslar S, Sanatani S, Trivedi B, Fischbach P, Paul
T, Young M-L, Tisma-Dupanovic S, Silva J, Cuneo B, Fournier A, Singh H, Tanel
RE, Etheridge SP. Congenital long QT 3 in the pediatric population. Am J Cardiol
2012;109:1459–1465.

22. Wilde AAM, Moss AJ, Kaufman ES, Shimizu W, Peterson DR, Benhorin J, Lopes
C, Towbin JA, Spazzolini C, Crotti L, Zareba W, Goldenberg I, Kanters JK,
Robinson JL, Qi M, Hofman N, Tester DJ, Bezzina CR, Alders M, Aiba T,
Kamakura S, Miyamoto Y, Andrews ML, McNitt S, Polonsky B, Schwartz PJ,
Ackerman MJ. Clinical aspects of type 3 long-QT syndrome: an International
Multicenter Study. Circulation 2016;134:872–882.

23. Eckardt L, Probst V, Smits JPP, Bahr ES, Wolpert C, Schimpf R, Wichter T,
Boisseau P, Heinecke A, Breithardt G, Borggrefe M, LeMarec H, Böcker D,
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